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A Variational Vector Finite Difference Analysis for
Dielectric Waveguides

Scott S. Patrick, Member, IEEE, and Kevin J. Webb, Member, IEEE

Abstract—A numerical technique based on the finite differ-
ence method is developed for the analysis of lossless dielectric
waveguides. This method is a variational approach using all
three components of the magnetic field vector, allowing for the
enforcement of the divergence condition. The dispersion char-
acteristics and field distributions for dielectric waveguides are
accurately computed. Comparisons are made between the mag-
netic vectorial finite difference method and a finite element
method incorporating the same functional.

I. INTRODUCTION

HE FINITE difference method (FDM) has long been

used to analyze scalar electromagnetic problems such
as waveguides [1]. More recently, however, the FDM has
been used to solve dielectric waveguide problems [2], as
these are vector problems and can present numerical dif-
ficulties not present in a scalar TE/TM solution. FDM
solutions have been generally based upon the direct so-
lution of the wave equation {3]-[4]. Schweig and Bridges
[5] used the finite-difference method to analyze dielectric
waveguides, but based their solution upon a variational
approach similar to that used in the finite element method
(FEM).

Initial vector variationally stable FDM and FEM wave-
guide analyses, including the approach developed by
Schweig and Bridges, were in terms of the longitudinal
electric and magnetic field components (E, — H, FDM
[6], E, — H, FEM [7]), with the most serious drawbacks
being the appearance of the so-called spurious, non-phys-
ical solutions. Konrad proposed a FEM formulation in
terms of the magnetic field vector (H — FEM) [8], how-
ever spurious solutions still existed in this formulation.
Rahman and Davies [9] introduced a ‘‘penalty function”’
for the H — FEM formulation which forces the spurious
modes to be higher order solutions. Koshiba, Hayata, and
Suzuki [10] have used a similar approach. The spurious
solutions occurred because the basis set used was not di-
vergenceless. The nonzero penalty term for these non-
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physical solutions then becomes associated with higher
frequencies (eigenvalues). The result is then that the
lower-order modes satisfy the zero divergence condition.
The divergence condition can be used to eliminate H_ from
the vector magnetic field formulation, resulting in a H,
formulation which should be free from spurious solutions
[11]. Alternatively, when the divergence condition is used
to reduce the curl-curl operator to the Laplacian form, a
two-vector magnetic field equation can be formed as two
scalar equations for the hybrid problem [12], [13]. This
approach has been shown to alleviate spurious solution
problems when the magnetic field differential equations
were solved directly, but this is not a variational formu-
lation.

We develop a numerical technique based on the FDM
in terms of all three components of the magnetic field vec-
tor (H — FDM) for the analysis of lossless dielectric
waveguides. The penalty function is also incorporated into
the finite-difference expressions, allowing for the
suppression of spurious modes in the frequency range of
interest. The dispersion characteristics and field distribu-
tions for dielectric waveguides are accurately computed.
The FDM has some notable advantages compared to the
FEM in the analysis of waveguides, including ease of im-
plementation and the production of the ordinary eigen-
value problem with banded matrices. This suggests in-
vestigation of the relative merits of the H — FDM to the
H — FEM.

A computer program was developed which imple-
mented the H — FDM. To demonstrate the proper oper-
ation of the software, several cases are examined. The
empty waveguide’s propagation characteristics for several
lower order modes are examined for different meshes.
Normalized fields are also examined and compared with
the exact solution. Rectangular dielectric waveguide
propagation characteristics and fields are compared with
several other methods, including the H — FEM based
upon the same functional expression. Additionally, the
troublesome spurious modes present in some FDM and
FEM solutions are examined for a rectangular waveguide.

II. FiNiTE-DIFFERENCES
Variational Approach

We consider a dielectric waveguide with arbitrary cross-
section in the xy-plane. For a two-dimensional source-
free region with Dirichlet or Neuman boundary conditions
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and a dependence of exp j(wt — (z), the functional [14]
is

F = H [(V x H)* - ([K]"'V x H)
s

— k3H* H + p(V - H)¥(V - H)]dS. ()

~ where k3 = w %€, po» [K] is the relative permittivity tensor,
and p is the penalty coefficient, taking on constant values
greater than zero. The penalty function imposes V « H =
"0 for lower order solutions. Ideally, physical solutions are
negligibly affected by variations in p. Generally, how-
ever, as p increases, the accuracy of the solution de-
creases while the likelihood of the appearance of spurious
solutions decreases. The functional in (1) is derived in
terms of H, simplifying boundary conditions for dielectric
waveguides since all magnetic field components are con-
tinuous across the dielectric interfaces. By expressing (1)
in terms of components, FD approximations can be ap-
plied. \

To apply the FDM, we follow the approach outlined by
Schweig and Bridges [5]. The dielectric guide is enclosed
in a “‘box’” with metallic wall boundary conditions (either
a perfect electric -conductor [pec] or a perfect magnetic
conductor [pmc]). The box must be sufficiently larger than
the guide in order to prevent guided mode perturbation.
Appropriate boundary conditions to account for symmetry
can be applied to reduce computation domain. As seen in
Fig. 1, for the case of a rectangular weaveguide, a quad-
rant is covered by a rectangular grid with the relative per-
mittivity K,, inside each element being uniform. The nodes
and elements are numbered in a fashion that minimizes
the bandwidth of the matrix to be solved. The node num-
bering scheme used is the ‘‘natural ordering by columns’’
approach [15]. The width of the dielectric waveguide is a
and the height is b. The grid is constructed such that the
walls of the box each divide a row or column of elements
into equal halves. A graded mesh is created by changing
element sizes, allowing for a better representation in cer-
tain regions.

The functional is applied over each element using FD
approximations with continuity of H enforced at the
nodes. Consider one such element S, with width of /; and
height of &,. This element’s contribution to the functional
can be evaluated using FD approximations [6], [16] for
the terms in (1). Using i and j to denote the x, y, or z
components, we have

hihy
4

We can approximate the term

(Y as
s\ dx
hy phi aI{] 2
= —) dxd
So So <8x> vy

72 2 2
Ss,, H:dS = (H: + H, + H, + H). (2

/ pec or pmc
N=11 z %>

pec or pmc

0

<——a/2 —>|
w/2
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Fig. 1. The dielectric. waveguide placed inside the ‘‘box’’ with metallic
walls. The region of interest is covered by a grid of rectangular elements
having uniform permittivity inside each. In this case, by exploiting sym-
metry, only the upper quadrant need be analyzed. For the square waveguide
comparison with Goell and the H — FEM methods of solution, the outer
box is made a perfect electric conductor (pec), the horizontal axis-of-sym-
metry is made a pec, and the vertical axis-of-symmetry is made a perfect
magnetic conductor (pmc) in order to establish the dominant mode. K; = .
225, N=11,and a = 2.0 cm.
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where we assume that dH; /dx has the constant value (H3’
— H,)/h, on the segment 1-3 and the constant value (H,

— H,)/hy on the segment 24, and then use the trapezoi-
dal rule to integrate with respect to y. Similarly, we can

obtain
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Likewise, we approximate the term
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Similarly,

aHJ hyh, - HJI
—dS = —|(H;, + H —_—
Ssp A, dx 4 ( ») h1

H, - H,
+ ( L 14) <T>:|
gaﬂlﬂds hihy | (Hu = He H, - H,
s, 0x dy 4 hy hy

. Hj4_Hjs+HJz_Hjl
h2 hz : (7)

Using (2)-(7), we can obtain an approximation for F
by summing the contributions of each element S, in the
region of interest. The variational approach used is based
on the Ritz procedure, with the functional being ex-
pressed as a series of functions with unknown coeffi-
cients. The expression for stationarity (6F = 0) of F is
found by differentiating with respect to each of the field
variables, H, , H, , H, , for every node j, and setting the
result equal to zér0. For N? elements there are (N — 1)*
nodes with three unknowns at each node, H,, H and H,.
By summing the contributions of each of the N* elements,
a set of 3(N — 1)? linear equations is derived, which can
be written as

1 p 2

—A+-P|X=k;BX 8

<2 K, 2 > 0 ®

where A and P are symmetric, banded, positive-definite

matrices, B is a diagonal, positive-definite matrix, and X

is an ordered vector of the variables H, , H, , H,.
Equation (8) can obviously be rewritten as

A’X = kiBX. )

By a transformation, (9) can be reduced to a simple ei-
genvalue problem

A"X = kiX (10)

where
A’ = B_(I/Z)A'B_“/Z). (11)

The matrix A" is banded and symmetric, allowing the use
of a multitude of efficient algorithms to solve for the ei-
genvalues and eigenvectors (wavenumber and fields, re-
spectively). The memory requirements are minimized by
storing only upper banded elements of A” with a band-
width (the number of codiagonals including the main di-
agonal) of (3N + 2).

A program has been developed to form (10) by system-
atically adding the contributions of each element to form
A, P, and B. The program requires the total number of
mesh elements, N?; the dimensions, A, h,, for each ele-
ment; the relative permittivity K, at the location of the
element §,; the propagation constant, §; and the mode
class (imposed by the type of metallic walls—pec or pmc—
on each side of the ‘‘box’"). The output is then the eigen-

values (k,) and corresponding eigenvectors (H). Details
on the types of elements, local matrices, and the imple-
menting software are in [17].

III. MATRIX EIGENSYSTEM SOLUTION

There are many algorithms which solve the ordinary
eigenvalue problem of (10). We have chosen the eigen-
system routine EVESB from the well-known IMSL pack-
age. EVESB is based upon routines from the popular and
accessible EISPACK eigensystem package [18]. We have
used routines which were specifically designed for a
banded, symmetric matrix using a solution based the ra-
tional QR method with Newton corrections [19].

It is worth noting here that the banded symmetric form
of A” is one advantage of the H — FDM. Had H — FEM
been used, the eigenproblem AX = ABX would be formed.
In this case, B is a banded, rather than a diagonal matrix.
Thus the ordinary eigenvalue problem cannot be formed
with a banded matrix by means of a simple linear trans-
formations. The matrix solvers of the generalized eigen-
value problem are not in as great a variety nor as acces-
sible as those for (10).

IV. NUMERICAL RESULTS AND COMPARISONS

To verify the accuracy and versatility of the H — FDM
described above, several rectangular waveguide cases are
considered. More complex waveguides have been ana-
lyzed in [20].

Rectangular Dielectric Waveguide

The hybrid modes of the rectangular dielectric wave-
guide, following the notation of [5], may be divided into
four classes, depending on the symmetry of the longitu-
dinal fields: HE,‘, HE,’, HE,’, HE;’. The first super-
script, o or e, denotes the symmetry of H, with respect to
the x-axis, the second superscript refers to the symmetry
of H, with respect to the y-axis, and the subscript n des-
ignates the order of the given mode in its class.

The square dielectric waveguide is considered. The ge-
ometry for this case along with element configuration is
shown in Fig. 1. The number of elements in the width of
the “‘metallic box,”” N, is chosen to be 11 and M, the
number of elements in the width of the waveguide, is 5.
The H — FDM is used to generate normalized V — B
curves, where the parameters are

V= kya VK; ~ K, (12)
_ B/ — K
B = (13)

with K being the relative permittivity constant of the die-
lectric waveguide, K, the relative permittivity constant of
the exterior, and a the width of the waveguide. For the
case at hand, K; = 2.25 and K, = 1.0. The V — B curve
for the dominant mode as calculated by the H — FDM is
shown in Fig. 2 as the solid line. Also shown are several
points taken from Goell’s [21], which uses a series ex-
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Fig. 2. The propagation characteristic for the dominant mode of the square
dielectric waveguide. The solid line is the ' — B curve determined by the
H — FDM, the filled squares are values calculated by the H — FEM, and
the open triangles correspond to Goell’s solution [21].

pansion in terms of circular harmonics. Note that the H
— FDM agrees very well with Goell’s method. This case
is also compared with a H — FEM [22], [23], based on
the same variational expression (1) as the H - FDM. To
make as valid a comparison as possible between the two
methods, the sizes of the waveguide and the metallic box
were the same for both the FDM and the FEM. In order
to keep the order of the A matrix the same, the number of
elements for the FEM was 32. The penalty coefficient p
for both experiments was set at 1. The results for several
eigenvalues are also shown in Fig. 1. Again, the results
for the H — FDM agree very well with those for the H
— FEM.

Several notable points of comparison between the H —
FDM and H — FEM are shown in Table I. Note that the
eigenvalue time of solution for the H — FDM is less than
the time required for the H — FEM. Both the FDM and
the FEM programs were run on a SUN 3/260 workstation.
However, the H — FDM uses an IMSL based eigensolver
(EVESB), while the H — FEM used in this comparison
solves the eigenproblem by a subspace iteration method.
Consequently, some of the computation time differences
could be attributed to relative algorithm efficiency and dif-
fering mesh generation. The bandwidth is minimized for
the H — FDM by the global numbering scheme chosen,
while some of the additional bandwidth of the H — FEM
can be attributed to ‘‘edge functions’’> which are not nec-
essary for analysis of this particular case (edge functions
are necessary for multiply-connected conducting strip
problems, e.g., microstrip) and to the profile storage tech-
nique [24] used in this FEM. As mentioned, the FEM
produces the generalized eigenvalue problem as opposed
to the ordinary eigenvalue problem produced by the FDM,
allowing for the H — FDM to use a greater variety of
eigensystem solvers. However, the H — FEM is more
flexible in the discretization of various waveguide geom-
etries.

Consider another square dielectric waveguide is con-
sidered with K| now equal to 2.1. This time V — B plots

TABLE 1
CoMPARISON BETWEEN H — FDM AND H — FEM FOR A SQUARE
DiELECTRIC WAVEGUIDE K, = 2.25 AND K, = 1.0

H — FDM H — FEM
Eigenequation AX = \X AX = \BX
Order of A (unknowns) 300 300
Bandwidth of A 35 48
Time of solution for one eigenvalue* 33s 88 s

*Includes mesh generation.

are compared with Marcatili’s well-known approximation
for rectangular dielectric waveguides [25]. First, we com-
pare Marcatili’s solution with the H — FDM for two dif-
ferent sized meshes. The phase constant characteristics
for the first two modes of HE® class, shown in Fig. 3,
are degenerate with the HE class since the waveguide is
square. These correspond to the E7; and E%, modes in the
Marecatili’s notation. We see that the solution using more
elements (N = 15), which we expect to be more accurate,
has closer agreement with Marcatili’s than does the N =
11 solution. Marcatili’s closed form approximation is
known to have a sharper drop-off for small V than is phys-
ically correct, which is also demonstrated in Fig. 3. In
general, good agreement is demonstrated. Next, the low-
est eight modes for the same geometry and permittivity
are considered. The V — B curves for these modes are
shown in Fig. 4. Correspondence between solutions is
good for larger V, where Marcatili’s approximation is
considered to be more accurate.

Field Plots

To compare the computed fields with other methods of
solution, another square dielectric waveguide is selected,
again with K; = 2.1. Here, the H — FDM is compared
to Schweig’s E, — H, FDM and Marcatili’s solutions.
Again, to make comparisons as valid as possible, N = 15
and M = 8 for both FDMs. The mode, ¥, and B are shown
in Table II. The dominant mode field plots for H. are
shown in Figs. 5 and 6, respectively plotted as functions
of x/a and y/a. The solid lines are the fields according
to Marcatili’s solution and the discrete field points from
both FDM’s are taken from the row of nodes closest to
the respective x- or y-axis. The vertical solid line repre-
sents the edge of the dielectric waveguide while the ver-
tical dashed line shows the position of the outer metallic
box. The expected sinusoidal-like behavior of the field
inside the waveguide is observed, as well as the exponen-
tial decay outside the waveguide. However, both the H
— FDM and the £, — H, FDM demonstrate more con-
fined fields inside the waveguide. In Fig. 6, the E, — H,
FDM shows a drop in the field at the interface that neither
the Marcatili solution nor the H — FDM demonstrates.
Additionally, the E, — H, FDM shows the fields increas-
ing slightly at the metallic box. A possible explanation
for this is that Schweig and Bridges in [5] appear to have
improperly emphasized the contribution of boundary ele-
ments by neglecting to eliminate the contribution of the
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Fig. 3. V — B curves for the lowest two modes of the HE“ class for a
square dielectric waveguide with K, = 2.1. The solid line and dotted line
correspond to the values calculated by the H — FDM with N = 11 and N
= 15, respectively. The dashed line is Marcatili’s closed-form approxi-
mation. ;
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Fig. 4. Dispersion curves for the lowest eight modes of the square dielec-
tric waveguide. The solid lines correspond to the H — FDM and the dashed
lines are Marcatili’s [25].

TABLE II
COMPARISON OF H — FDM, ScHWEIG'S E, — H, FDM, AND MARCATILI'S
SOLUTION FOR THE DOMINANT MODE OF A SQUARE DIELECTRIC
WAVEGUIDE: K, = 2.1 AND K| = 1.0

Mode N M 14 B
H — FDM HE{® 15 8 5.44 0.59
E, — H. FDM HE{ 15 8 5.44 0.60
5.44 0.58

Marcatili T —_ —

functional outside the metallic boundaries. The error in-
troduced by this is almost negligible for the eigenvalue,
but in some cases produces significant error for the eigen-
vector at nodes near the metallic walls. Details on this are
in [17].
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Fig. 5. Plot of the normalized longitudinal H, field as a function of x/a.
The solid line is the field determined by Marcatili’s solution, the open cir-
cles are obtained by the H — FDM and the filled squares are by Schweig’s
E. — H, FDM [5]. The discrete points are taken from the row of nodes
closest to the x-axis, where only the quartered section is considered. The
vertical solid line represents the edge of the waveguide while the vertical
dashed line shows the position of the outer metallic box. Parameters are
shown in Table II.
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Fig. 6. Plot of the normalized longitudinal H, field as a function of y/a.
The solid line is the field determined by Marcatili’s solution, the open cir-
cles are obtained by the H — FDM and the filled squares are by Schweig’s
E, — H, FDM [5]. The discrete points are taken from the row of nodes
closest to the y-axis, where only the quartered section is considered. The
vertical solid line represents the edge of the waveguide while the vertical
dashed line shows the position of the outer metallic box. Parameters are
shown in Table II.

Spurious Modes

Spurious or non-physical modes that do not represent
actual modes appear in variational-type vector methods
due to the fact that the functional is a necessary, but not
a sufficient condition for the true solution. By adding the
penalty function, the spurious modes are moved to higher
frequencies, effectively enforcing the divergence condi-
tion for the lower-order modes. It is important then to
examine the effect of the penalty function on the H —
FDM.
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Fig. 7. Eigenvalue plot for the 40 lowest modes of the square guide (X
" = 2.1) using the H — FDM. No spurious solutions ar¢ present.

In using the E, — H, FDM, Schweig’s variational ap-
proach contained spurious modes in the range 0.5 < B <
1.0 [5], as did Corr’s analysis [6]. When using the H —
FDM for the same square dielectric waveguide used by
Schweig, however, no low-order spurious modes are seen
for p = 1. Fig. 7 shows the plot of the 40 lowest modes
and all correspond to physical solutions. Most cases
solved by the H — FEM for p > 1 do not produce spu-
rious modes in the lower eigenvalue region [23], but for
higher penalty numbers inaccuracies are introduced into
the eigenvector. Similarly for the H — FDM, no spurious
modes were seen for the cases tested when p was greater
that 1. However, for p < 1, spurious modes were seen in
the lower eigenvalues for both the H — FEM and the H

— FDM. Similarly, Hayata [26] reported that for the H

— FEM, in general, when p is large the solutions are sta-
ble but their accuracy is poorer. Likewise, for small p the
accuracy of the physical solutions tends to be better, but
spurious solutions appear in the region of interest. The
effect of the penalty number p on solutions found by the
H — FDM appears to be s1m11ar to the effect p has on its
FEM counterpart.

V. CONCLUSION

For the first time, a finite-difference analysis for dielec-
tric waveguides is presented which is formulated in terms
of all three components of the vector magnetic field, based
upon a variational approach. The variational vectorial
magnetic field formulation is convenient for inhomoge-
neous diclectric problems due to the ease of enforcing
boundary conditions across dielectric interfaces. This fi-
nite-difference formulation produces an ordinary eigen-
equation having a banded, symmetric matrix for lossless
dielectrics and symmetric permittivity tensors. By impos-
ing a penalty function, therefore in essence enforcing zero-
divergence for lower-order modes, spurious solutions
were not a problem at lower frequencies. Compared to the

finite element version of the vector magnetic field ap-
proach, the finite-difference method lends itself to a
greater variety of solution algorithms, and perhaps swifter
ones, due to the generation of the ordinary eigenvalue
problem.
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