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Abstrac&A numerical technique based on the finite differ-

ence method is developed for the analysis of lossless dielectric

waveguides. This method is a variational approach using all

three components of the magnetic field vector, allowing for the
enforcement of the divergence condition. The dispersion char-

acteristics and field distributions for dielectric waveguides are
accurately computed. Comparisons are made between the mag-
netic vectorial finite difference method and a finite element

method incorporating the same functional.

I. INTRODUCTION

T HE FINITE difference method (FDM) has long been

used to analyze scalar electromagnetic problems such

as waveguides [1], More recently, however, the FDM has

been used to solve dielectric waveguide problems [2], as

these are vector problems and can present numerical dif-

ficulties not present in a scalar TE/TM solution. FDM

solutions have been generally based upon the direct so-

lution of the wave equation [3]-[4]. Schweig and Bridges

[5] used the finite-difference method to analyze dielectric

waveguides, but based their solution upon a variational

approach similar to that used in the finite element method
(FEM) .

Initial vector variationally stable FDM and FEM wave-

guide analyses, including the approach developed by

Schweig and Bridges, were in terms of the longitudinal

electric and magnetic field components (.EZ – HZ FDM

[6], E, – H, FEM [7]), with the most serious drawbacks

being the appearance of the so-called spurious, non-phys-

ical solutions. Konrad proposed a FEM formulation in

terms of the magnetic field vector (El – FEM) [8], how-

ever spurious solutions still existed in this formulation.

Rahman and Davies [9] introduced a “penalty function”

for the If – FEM formulation which forces the spurious

modes to be higher order solutions. Koshiba, Hayata, and

Suzuki [10] have used a similar approach. The spurious

solutions occurred because the basis set used was not di-
vergenceless. The nonzero penalty term for these non-
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physical solutions then becomes associated with higher

frequencies (eigenvalues). The result is then that the

lower-order modes satisfy the zero divergence condition.

The divergence condition can be used to eliminate Hz from

the vector magnetic field formulation, resulting in a Hf

formulation which should be free from spurious solutions

[1 1]. Alternatively, when the divergence condition is used

to reduce the curl-curl operator to the Laplacian form, a

two-vector magnetic field equation can be formed as two

scalar equations for the hybrid problem [12], [13]. This

approach has been shown to alleviate spurious solution

problems when the magnetic field differential equations

were solved directly, but this is not a variational formu-

lation.

We develop a numerical technique based on the FDM

in terms of all three components of the magnetic field vec-

tor (H – FDM) for the analysis of lossless dielectric

waveguides. The penalty function is also incorporated into

the finite-difference expressions, allowing for the

suppression of spurious modes in the frequency range of

interest. The dispersion characteristics and field distribu-

tions for dielectric waveguides are accurately computed.

The FDM has some notable advantages compared to the

FEM in the analysis of waveguides, including ease of im-

plementation and the production of the ordinary eigen-

value problem with banded matrices. This suggests in-

vestigation of the relative merits of the H – FDM to the

H – FEM.

A computer program was developed which imple-

mented the H – FDM. To demonstrate the proper oper-

ation of the software, several cases are examined. The

empty waveguide’s propagation characteristics for several

lower order modes are examined for different meshes,

Normalized fields are also examined and compared with

the exact solution. Rectangular dielectric waveguide

propagation characteristics and fields are compared with
several other methods, including the H – FEM based

upon the same functional expression. Additionally, the

troublesome spurious modes present in some FDM and
FEM solutions are examined for a rectangular waveguide.

II. FINITE-DIFFERENCES

Variational Approach

We consider a dielectric waveguide with arbitra~ cross-

section in the xy-plane. For a two-dimensional source-

free region with Dirichlet or Neuman boundary conditions

0018-9480/92$03.00 @ 1992 IEEE
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and a dependence of exp j(cot – I%), the functional [14]

is

F=
U

[(v x H)* “ ([.K]-’V x H)

— (1):@ H + P(V “ H)*(V o H)] dS.

where k~ = a 2C0Vo, [~] is the relative permitt ivity tensor,

and p is the penalty coefficient, taking on constant values

greater than zero. The penalty function imposes V “ H =
O for lower order solutions. Ideally, physical solutions are

negligibly affected by variations in p. Generally, how-

ever, as p increases, the accuracy of the solution de-

creases while the likelihood of the appearance of spurious

solutions decreases. The functicmal in (1) is derived in

terms of H, simplifying boundary conditions for dielectric

waveguides since all magnetic field components are con-

tinuous across the dielectric interfaces. By expressing (1)

in terms of components, FD approximations can be ap-

plied.

To apply the FDM, we follow the approach outlined by

Schweig and Bridges [5]. The dielectric guide is enclosed

in a “box” with metallic wall boundary conditions (either

a perfect electric -conductor [pee] or a perfect magnetic

conductor [pmc] ). The box must be sufficiently larger than

the guide in order to prevent guided mode perturbation.

Appropriate boundary conditions to account for symmetry

can be applied to reduce computa~tion domain. As seen in

Fig. 1, for the case of a rectangular weaveguide, a quad-

rant is covered by a rectangular grid with the relative per-

mittivity Kp inside each element being uniform. The nodes

and elements are numbered in a fashion that minimizes

the bandwidth of the matrix to be solved. The node num-

bering scheme used is the “natural ordering by columns”

approach [15]. The width of the dielectric waveguide is a

and the height is b. The grid is constructed such that the

walls of the box each divide a row or column of elements

into equal halves. A graded mesh is created by changing

element sizes, allowing for a better representation in cer-

tain regions.

The functional is applied over each element using FD

approximations with continuity of H enforced at the

nodes. Consider one such element SPwith width of h I and

height of h2. This element’s contribution to the functional

can be evaluated using FD approximations [6], [16] for

the terms in (l). Using i and j to denote the x, y, or z

components, we have

We can approximate the term

dHj 2

! (-)S, ax
dS

hz hi i3Hj 2
.—

SS()
dx dy

00 z

Y ~ pec or pmc
\

*a/2 +
~ .J,---d

Fig. 1. The dielectric waveguide placed inside the “box” with metallic
walls. The region of interest is covered by a grid of rectangular elements
having uniform permittivity inside each. In this case, by exploiting sym-

metry, only the upper quadrant need be analyzed. For the square waveguide

comparison with Goell and the H – FEM methods of solution, the outer
box is made a perfect electric conductor (pee), the horizontal axis-of-sym-

metry is made a pec, and the vertical axis-of-symmetry is made a perfect

magnetic conductor (pmc) in order to establish the dominant mode. K, =

2.25, N = 11, anda = 2.Ocm.

where we assume that dHj /ax has the constant value (H3
— 271)/h I on the segment 1-3 and the constant value (H4
— H2) /hl on the segment 2-4, and then use the trapezoi-

dal rule to integrate with respect to y. Similarly, we can

obtain

Likewise, we approximate the term

ht a~j h

SS~— dy dx
Oayo

‘+H&Hi’y=h2).=h,+(~Hi’.r=h,

‘~~Hly=hz)

.=O+(%H’’’=O)

,=J

‘w(Hi1+Hi2)(q2n

[ )1

Hj4 – Hj3
+ (Hi2 – HiJ

h2 “
(5)
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Similarly,

()H], – H],

(Hi, + HJ ~1

( )1HJ, – HJ,
+ (Hi2 – Hi,)

h,

!-8M ~ ~s ~ hlh-KHi, – HL2 Hz, – H,,
+

Sp ax ay 4 hl hl
)

“(H], – HJ3 HI, – Hj,

hz
+

hz )1~(7)

Using (2)-(7), we can obtain an approximation for F

by summing the contributions of each element SP in the

region of interest. The variational approach used is based

on the Ritz procedure, with the functional being ex-

pressed as a series of functions with unknown coeffi-

cients. The expression for stationarity (8F = O) of F is

found by differentiating with respect to each of the field

variables, H,,, HY,, H:,, for every node j, and setting the

result equal to zero. For N2 elements there are (N – 1)2

nodes with three unknowns at each node, H,, HY, and Hz.

By summing the contributions of each of the N* elements,

a set of 3(N – 1)2 linear equations is derived, which can

be written as

( ):A+; P X=k;BX
P

(8)

where A and P are symmetric, banded, positive-definite

matrices, B is a diagonal, positive-definite matrix, and X

is an ordered vector of the variables ~X,, HY,, Hz,.

Equation (8) can obviously be rewritten as

A’X = k;BX. (9)

By a transformation, (9) can be reduced to a simple ei-

genvalue problem

A“X = k;X (lo)

where

A“ = B-(lp)A’B-(1/2). (11)

The matrix A” is banded and symmetric, allowing the use

of a multitude of efficient algorithms to solve for the ei-

genvalues and eigenvectors (wavenumber and fields, re-
spectively). The memory requirements are minimized by

storing only upper banded elements of A” with a band-

width (the number of codiagonals including the main di-

agonal) of (3N + 2).

A program has been developed to form (10) by system-

atically adding the contributions of each element to form

A, P, and B. The program requires the total number of

mesh elements, N*; the dimensions, hl, h2, for each ele-

ment; the relative permittivit y KP at the location of the

element SP; the propagation constant, /3; and the mode

class (imposed by the type of metallic walls—pee or pmc—

on each side of the “box”). The output is then the eigen-

values (ko) and corresponding eigenvectors (H). Details

on the types of elements, local matrices, and the imple-

menting software are in [17].

III. MATRIX EIGENSYSTEM SOLUTION

There are many algorithms which solve the ordinary

eigenvalue problem of (10). We have chosen the eigen-

system routine EVESB from the well-known IMSL pack-

age. EVESB is based upon routines from the popular and

accessible EISPACK eigensystem package [18]. We have

used routines which were specifically designed for a

banded, symmetric matrix using a solution based the ra-

tional QR method with Newton corrections [19].

It is worth noting here that the banded symmetric form

of A” is one advantage of the H – FDM. Had H – FEM

been used, the eigenproblem AX = hBX would be formed.

In this case, B is a banded, rather than a diagonal matrix.

Thus the ordinary eigenvalue problem cannot be formed

with a banded matrix by means of a simple linear trans-

formations. The matrix solvers of the generalized eigen-

value problem are not in as great a variety nor as acces-

sible as those for (10).

IV. NUMERICAL RESULTS AND COMPARISONS

To verify the accuracy and versatility of the H – FDM

described above, several rectangular waveguide cases are

considered. More complex waveguides have been ana-

lyzed in [20].

Rectangular Dielectric Waveguide

The hybrid modes of the rectangular dielectric wave-

guide, following the notation of [5], may be divided into

four classes, depending on the symmetry of the longitu-

dinal fields: HE:, HE:, HE:, HE;. The first super-

script, o or e, denotes the symmetry of Hz with respect to

the x-axis, the second superscript refers to the symmetry

of Hz with respect to the y-axis, and the subscript n des-

ignates the order of the given mode in its class.

The square dielectric waveguide is considered. The ge-

ometry for this case along with element configuration is

shown in Fig. 1. The number of elements in the width of

the “metallic box, ” N, is chosen to be 11 and M, the

number of elements in the width of the waveguide, is 5,

The H – FDM is used to generate normalized V – B

curves, where the parameters are

V=koam (12)

B = (6/ko)2 – KZ

K,– K* ‘
(13)

with K, being the relative permittivity constant of the die-

lectric waveguide, K2 the relative permittivity constant of

the exterior, and a the width of the waveguide. For the

case at hand, KI = 2.25 and K2 = 1.0. The V – B curve

for the dominant mode as calculated by the H – FDM is

shown in Fig. 2 as the solid line. Also shown are several

points taken from Goell’s [21], which uses a series ex-
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Fig. 2. The propagation characteristic for the dominant mode of the square

dielectric waveguide. The solid line is the V – B curve determined by the

H – FDM, the filled squares are values calculated by the H – FEM. and

the open triangles correspond to Goell’s solution [21].

, pansion in terms of circular harmonics. Note that the H

– FDM agrees very well with Goell’s method. This case

is also compared with a H – FEM [22], [23], based on

the same variational expression (1) as the H -- FDM. To

make as valid a comparison as possible between the two

methods, the sizes of the waveguide and the metallic box

were the same for both the FDM and the FEM. In order

to keep the order of the A matrix the same, the number of

elements for the FEM was 32. The penalty coefficient p

for both experiments was set at 1. The results for several

eigenvalues are also shown in Fig. 1. Again, the results

for the H – FDM agree very well with those for the H

– FEM.

Several notable points of comparison between the H –

FDM and H – FEM are shown in Table I. Note that the

eigenvalue time of solution for the H – FDM is less than

the time required for the H – FEM. Both the FDM and

the FEM programs were run on a SUN 3/260 workstation.

However, the Z# – FDM uses an IMSL based eigensolver

(EVESB), while the If – FEM used in this comparison

solves the eigenproblem by a subspace iteration method.

Consequently, some of the computation time differences

could be attributed to relative algorithm efficiency and dif-

fering mesh generation. The bandwidth is minimized for

the H – FDM by the global numbering scheme chosen,

while some of the additional bandwidth of the, H – FEM

can be attributed to “edge functions” which are not nec-

essary for analysis of this particular case (edge functions

are necessary for multiply-connected conducting strip

problems, e.g., microsttip) and to the profile storage tech-

nique [24] used in this FEM, As mentioned, the FEM

produces the generalized eigenvalue problem as opposed

to the ordinary eigenvalue problem produced by the FDM,

allowing for the H – FDM to use a greater variety of

eigensystem solvers. However, the H — FE,M is more

flexible in the discretization of various waveguide geom-

etries.

Consider another square dielectric waveguide is con-

sidered with K, now equal to 2.1. This time V – B plots

TABLE I

COMPARISON BETWEEN H – FDM AND H – FEM FOR A SQUARE

DIELECTRIC WAVEGUIDE K, = 2.25 AND Kt = 1.0

H – FDM H – FEM

Eigenequation AX=kX AX = ABX
Order of A (unknowns) 300 300
Bandwidth of A 35 48

Time of solution for one eigenvalue* 33 s 88 s

*Includes mesh generation

are compared with Marcatili’s well-known approximation

for rectangular dielectric waveguides [25]. First, we com-

pare Marcatili’s solution with the H – FDM for two dif-

ferent sized meshes. The phase constant characteristics

for the first two modes of HE@O class, shown in Fig. 3,

are degenerate with the HE” class since the waveguide is

square. These correspond to the E~l and E~2 modes in the

Marcatili’s notation. We see that the solution using more

elements (N = 15), which we expect to be more accurate,

has closer agreement with Marcatili’s than does the N =

11 solution. Marcatili’s closed form approximation is

known to have a sharper drop-off for small V than is phys-

ically correct, which is also demonstrated in Fig. 3. In

general, good agreement is demonstrated. Next, the low-

est eight modes for the same geometry and permittivity

are considered. The V — B curves for these modes are

shown in Fig. 4. Correspondence between solutions is

good for larger V, where Marcatili’s approximation is

considered to be more accurate.

Field Plots

To compare the computed fields with other methods of

solution, another square dielectric waveguide is selected,

again with KI = 2.1. Here, the H – FDM is compared

to Schweig’s Ez – Hz FDM and Marcatili’s solutions.

Again, to make comparisons as valid as possible, N = 15

and M = 8 for both FDMs. The mode, V, and B are shown

in Table 11. The dominant mode field plots for Hz are

shown in Figs. 5 and 6, respectively plotted as functions

of x/a and y/a. The solid lines are the fields according

to Marcatili’s solution and the discrete field points from

both FDM’s are taken from the row of nodes closest to

the respective x- or y-axis. The vertical solid line repre-

sents the edge of the dielectric waveguide while the ver-

tical dashed line shows the position of the outer metallic

box. The expected sinusoidal-like behavior of the field

inside the wav.eguide is observed, as well as the exponen-

tial decay outside the waveguide. However, both the H

– FDM and the E, – Hz FDM demonstrate more con-

fined fields inside the waveguide. In Fig. 6, the E, – Hz

FDM shows a drop in the field at the interface that neither

the Marcatili solution nor the H – FDM demonstrates.

Additionally, the E, – Hz FDM shows the fields increas-

ing slightly at the metallic box. A possible explanation

for this is that Schweig and Bridges in [5] appear to have

improperly emphasized the contribution of bounda~ ele-

ments by neglecting to eliminate the contribution of the
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Fig. 5. Plot of the normalized longitudinal H, field as a function of x/a.
The solid line is the field determined by Marcatili’s solution, the open cir-

cles are obtained by the H – FDM and the filled squares are by Schweig’s
E: - Hz FDM [5]. The discrete points are taken from the row of nodes

closest to the x-axis, where only the quartered section is considered. The

Fig. 3. V – B curves for the lowest two modes of the HE’’” class for a
square dielectric waveguide with KI = 2.1, The solid line and dotted line

correspond to the values calculated by the H – FDM with N = 11 and N
= 15, respectively. The dashed line is Marcatili’s closed-form approxi-

vertical solid line represents the edge of the waveguide while the vertical

dashed line shows the position of the outer metallic box. Parameters are
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I

1 I I I 1 I 1 1

Square Dielectric Waveguide .

shown in Table H. -
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FREQUENCY \OHETER. V

., LLLLLLL 1 I 1 1 1 I 1 1

.6 .80 .2 4
y/aFig. 4. Dispersion curves for the lowest eight modes of the square dielec-

tric waveguide. The solid lines correspond to the H – FDM and the dashed
lines are Marcatili’s [25] Fig. 6. Plot of the normalized longitudinal Hz field as a function of y/a.

The solid line is the field determined by Marcatili’s solution, the open cir-
cles are obtained by the H – FDM and the filled squares are by Schweig’s
E, – Hz FDM [5]. The discrete points are taken from the row of nodes

closest to the y-axis, where only the quartered section is considered. The
vertical solid line represents the edge of the waveguide while the vertical

dashed line shows the position of the outer metallic box. Parameters are
shown in Table II.

TABLE II

COMPARISON OF H – FDM, SCHWEIG’S E: – H, FDM, AND MARCATILI’S

SOLUTION FOR THE DOMINANT MODE OF A SQUARE DIELECTRIC

WAVEGUIDE: K2 = 2.1 AND K, = 1.0

Mode N M v B

H – FDM HE ~ 15 8 5.44 0.59

E, – H: FDM HE ~ 15 8 5.44 0.60

Marcatili E;, — — 5.44 0.58

Spurious Modes

Spurious or non-physical modes that do not represent

actual modes appear in variational-type vector methods

due to the fact that the functional is a necessary, but not

a sufficient condition for the true solution. By adding the

penalty function, the spurious modes are moved to higher

frequencies, effectively enforcing the divergence condi-

tion for the lower-order modes. It is important then to

examine the effect of the penalty function on the H –

FDM.

functional outside the metallic boundaries. The error in-

troduced by this is almost negligible for the eigenvalue,

but in some cases produces significant error for the eigen-

vector at nodes near the metallic walls. Details on this are

in [17].
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Fig. 7. Eigenvalue plot for the 40 lowest modes of the square guide (Kl

= 2.1) using the H – FDM. No spurious solutions are present.

In using the E, – Hz FDM, Schweig’s variational ap-

proach contained spurious modes in the range 0.5 < B <

1.0 [5], as did COrr’s analysis [6]. When using the lf –

FDM for the same square dielectric waveguide used by

Schweig, however, no low-order spurious modes are seen

for p = 1. Fig. 7 shows the plot of the 40 lowest modes

and all correspond to physical solutions. Most cases

solved by the Zl – FEM for p > 1 do not produce spu-

rious modes in the lower eigenvalue region [23], but for

higher penalty numbers inaccuracies are introduced into

the eigenvector. Similarly for the H – FDM, no spurious

modes were seen for the cases tested when p was greater

that 1. However, for p < 1, spurious modes were seen in

the lower eigenvalues for both the H – FEM and the H

– FDM, Similarly, Hayata [26] reported that for the H

– FEM, in general, when p is large the solutions are sta-

ble but their accuracy is poorer. Likewise, for small p the

accuracy of the physical solutions tends to be better, but

.- spurious solutions appear in the region of interest, Tine

effect of the penalty number p on solutions found by the

H – FDM appears to be similar to the effect p has on its

FEM counterpart.

V. CONCLUSION

For the first time, a finite-difference analysis for dielec-

tric waveguides is presented which is formulated in terms

of all three components of the vector magnetic field, based

upon a variational approach. The variational vectorial

magnetic field formulation is convenient for inhomoge-

neous dielectric problems due to the ease of enforcing

boundary conditions across dielectric interfaces. This fi-

nite-difference formulation produces an ordinary eigen-

equation having a banded, symmetric matrix for lossless
dielectrics and symmetric permittivity tensors. By impos-

ing a penalty function, therefore in essence enforcing zero-

divergence for lower-order modes, spurious solutions

were not a problem at lower frequencies. Compared to the

finite element version of the

preach, the finite-difference

vector magnetic field ap-

method lends itself to a

greater variety of solution algorithms, and perhaps swifter

ones, due to the generation of the ordinary eigenvalue

problem.
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